Eurographics Symposium on Parallel Graphics and Visualization (2015), pp. 1-9

C. Dachsbacher, P. Navratil (Editors)

SIMD Parallel Ray Tracing of Homogeneous Polyhedral
Grids

Brad Rathke'* Ingo Wald'

Kenneth Chiu?

Carson Brownlee’

Technical Computing Group, Intel Corp.

2Binghamton University, State University of New York

3Texas Advanced Computing Center, University of Texas

Abstract

Efficient visualization of unstructured data is vital for domain scientists, yet is often impeded by techniques which
rely on intermediate representations that consume time and memory, require resampling data, or inefficient im-
plementations of direct ray tracing methods. Previous work to accelerate rendering of unstructured grids have
focused on the use of GPUs that are not available in many large-scale computing systems. In this paper, we
present a new technique for directly visualizing unstructured grids using a software ray tracer built as a module
for the OSPRay ray tracing framework from Intel. Our method is capable of implicit isosurface rendering and di-
rect volume ray casting homogeneous grids of hexahedra, tetrahedra, and multi-level datasets at interactive frame
rates on compute nodes without a GPU using an open-source, production-level ray tracing framework that scales

with variable SIMD widths and thread counts.

1. Introduction

Rapid advancements in computing power and the sophis-
tication of simulations have allowed scientists to simulate
physical phenomena at increasingly large scales. Such sim-
ulations are challenging to effectively visualize at full res-
olution. Many techniques to optimize massive data render-
ing have focused on polygonal data or regular grids, how-
ever simulations often generate unstructured data in the form
of tetrahedral, hexahedral, or other polyhedra which pro-
duce many challenges for interactive rendering. For isosur-
facing, visualization tools such as Vislt [CBW™*12] and Para-
View [Hen04] use marching cubes [LC87] to extract a sur-
face explicitly. This intermediate representation requires ad-
ditional time and memory over the existing dataset and needs
to be regenerated every time the isovalue is modified result-
ing in unnecessary computational overhead during data ex-
ploration.

Rasterizing the resulting triangles also presents several
issues for performance and usability. Many of the result-
ing triangles may be occluded or of sub-pixel size in large
datasets. Transparency presents another issue for traditional
rasterization techniques due to the rendering order depen-
dent nature of rasterizing transparent objects. Culling and

Intel, Xeon, and Xeon Phi are trademarks of the Intel Corporation in the U.S. and other
countries. Other product names and brands may be claimed as property of others.

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2015)

Figure 1: Our method allows for interactively rendering
unstructured data sets (in this example, the “Jets” of 12M
tetrahedral cells), and supports both ray tracing of the imp-
licit isosurfaces as well as direct volume ray casting. Left:
Three semi-transparent (implicit) isosurfaces, with proper
transparency handled by the ray tracer. Right: The same vol-
ume with direct volume ray casting, using a transfer function
chosen to highlight the same features shown in the isosurface
rendering.

depth peeling methods can alleviate problems with rasteri-
zation of transparent objects, but add complexity to the ren-
dering algorithms. Directly ray tracing the unstructured grid,
however, requires no intermediate representation, can accu-
rately render transparency, and implicitly handles occluded
or sub-pixel regions.

In the case of volume rendering, special-case solutions
can be used that do not easily integrate with the rest of the
visualization tool, use lower fidelity splatting, or resample

2 B. Rathke et al. / SIMD Parallel Ray Tracing of Homogeneous Polyhedral Grids

to a structured volume whose size must necessarily be re-
stricted to fit the limited amount of GPU memory [SCCBO0S5].
Resampling an unstructured grid into a structured grid will
also cause some loss of data precision unless the new struc-
tured grid has a sufficiently large number of cells which can
significantly increase the amount of memory used and may
necessitate out-of-core rendering methods to achieve similar
results.

In this paper, we describe our approach to integrating
support for unstructured volumetric grids (currently tetra-
hedral and hexahedral meshes) into the OSPRay ray trac-
ing framework, Section 3.2, with volumetric rendering and
implicit isosurfacing. We demonstrate that this integration
allows rendering isosurfaces with advanced shading effects
like shadows, transparency, and ambient occlusion. In ad-
dition, by running completely on the CPU our method can
take advantage of the full system memory, can be run on any
non-GPU compute node, and can even operate on exactly the
same data structures that middle-ware tools like VTKoperate
on.

We begin by exploring previous related works with re-
gards to isosurface rendering and direct volume rendering
of unstructured volumetric data in section 2. Section 3 dis-
cusses background information about preexisting systems
used with our technique, including the Intel® SPMD Pro-
gram Compiler (ISPC), the Embree ray tracing kernels, and
the OSPRay ray tracing framework. A method overview is
presented in section 4. Section 5 will describe the min-max
BVH acceleration structure used in our technique. Sections
6 and 7 describe and discuss specific applications of our
method to isosurface rendering and direct volume ray casting
respectively. We describe our test execution environments
and tabulate the results of our experiments in section 8. Fi-
nally, we summarize and conclude in Section 9.

2. Previous Work

For rendering isosurfaces, most visualization packages such
as ParaView [Hen04] or Vislt [CBW™ 12] extract polygonal
isosurfaces (typically using some variant of the marching
cubes approach [LC87]), and render the resulting polygons
using OpenGL. Isosurface extraction is well supported by
tools like VTK [Sch06] but is still costly in terms of time
and memory, and can produce intractably large numbers of
triangles.

Rather than performing explicit isosurface extraction, a
number of authors have proposed rendering isosurfaces via
ray tracing to compute the ray/isosurface intersections on the
fly. For structured grids, Parker et al. [PSL*98] presented
a distributed shared memory approach to volume visualiza-
tion using ray tracing. Wald et al. [WFM*05] presented a
method for rendering implicit isosurfaces by building a min-
max kd-tree across all voxels in a structured grid, such that
the splitting planes of the tree align with the voxels of the

original grid. Knoll et al. [KTW™*11] made use of min-max
BVH structures to facilitate coherent ray traversal of struc-
tured volumes and implemented explicit Intel® Streaming
SIMD Extensions (SSE) vectorization of their volume inte-
gration function.

For unstructured grids, Marmitt et al. [MS06] explored us-
ing common real-time ray tracing techniques to find an ini-
tial voxel intersection, and then traversed subsequent cells
using Pliicker coordinate tests. Wald et al. [WFKHO07] de-
scribe an approach that applies trees (in the form of BVHs)
also to time-varying, tetrahedral data sets. They show the
potential of the approach, but are limited to rendering iso-
surfaces, and rely on a special frustum traversal that would
not easily fit a more general framework such as OSPRay.

For Direct Volume Rendering (DVR) of unstructured
meshes, Childs et al. [CDMO06] used a sample-based parallel
distributed memory algorithm which relied on first resam-
pling an unstructured grid into a structured grid. Muigg et
al. [MHDGI11] accomplished volume visualization of gen-
eral polyhedral meshes using a GPU through a two-sided
face sequence list data structure which allowed for easily
walking a polyhedral mesh. Shirley et al. [ST90] describe
a method of approximating direct volume rendering by pro-
jecting tetrahedra to a frame buffer as transparent triangles
and rasterizing them.

3. Background
3.1. Software Defined Visualization

While most modern visualization packages rely on GPU
based techniques Software Defined Visualization (SDVis) is
the concept of using a purely software-based rendering stack
to take advantage of the capabilities of CPU-based execu-
tion.

In software defined visualization all steps of the rendering
process are accomplished entirely on the CPU, which allows
for avoiding the constraints of working with a GPU, such as
limited memory and bus transfer speed and eliminates the
extra level of complexity that host-GPU communication and
scheduling can introduce. CPU-only rendering also simpli-
fies development of in-situ visualization algorithms by po-
tentially using the same data structures in the same memory
space as the running simulation.

3.2. OSPRay and Embree

OSPRay is an open-source ray tracing based rendering li-
brary for visualization. OSPRay is layered on top of Em-
bree [WWB™*14], a highly optimized set of CPU ray trac-
ing kernels. In addition, OSPRay also uses ISPC (see Sec-
tion 3.3) in order to achieve easy vectorization of the pro-
gram, and thus improving performance. Building on top of
the OSPRay framework allows us to take advantage of its
preexisting implementations for CPU based ray tracing.

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2015)

B. Rathke et al. / SIMD Parallel Ray Tracing of Homogeneous Polyhedral Grids 3

The volume rendering implementation in the current OS-
PRay release assumes that all volumes are structured, regular
or rectilinear grids. Structured curvilinear and unstructured
grids are not supported by the current version of OSPRay.
However OSPRay is extensible through a system of mod-
ules and we will leverage this to add support for tetrahedral
and hexahedral grids.

3.3. The Intel® SPMD Program Compiler

To achieve high utilization of CPU vector units we make use
of the ISPC [PM12] language and compiler. The ISPC lan-
guage is a subset of the C99 programming language and has
been extended to facilitate as Single Program Multiple Data
(SPMD) programming model. This allows for the program
to be written as if it were standard C99 with a few extra stor-
age class specifiers that affect how the CPU vector units will
be used. The extensions present in ISPC allow for efficient
use of CPU vector units without resorting to compiler intrin-
sics which are often not portable, and difficult to work with.
Through our use of the ISPC compiler we are able to write
code that will fully utilize processor vector units with a sin-
gle code base for both traditional CPUs and Intel® Xeon
PhiTMcoprocessors.

The storage type specifiers added by ISPC are uniform
and varying. The ISPC compiler executes several program
instances at once, one per vector lane (four processes for
SSE, eight for AVX). A uniform value is shared between
program instances, while a varying value will be different
across program instances.

4. Method Overview

Algorithmically, our method is motivated by Wald et al.’s ap-
proach to rendering isosurfaces of tetrahedral meshes using
min-max BVHs [WFKHO7]; but we extend this method to
also handle direct volume rendering and other unstructured
grid representations, and we use a different set of choices
for the actual implementation. As in Wald et al.’s approach,
we build a min-max BVH over the base primitives of the un-
structured grid (hexahedra or tetrahedra, in our case), and
store the minimum and maximum possible attribute value of
the respective subtree (Section 5). This data structure is then
used both for ray-isosurface intersection (Section 6) as well
as for efficiently locating volume samples in direct volume
rendering (Section 7).

We assume that the input to our method is one or more un-
structured volumetric grids made up of hexahedral or tetra-
hedral cells and can also be easily expanded for other types
of homogeneous polyhedral grids. Each volumetric grid is
specified through a vertex array, one or more attribute arrays,
and an array of vertex indices, with either 4 (tetrahedra) or
8 (hexahedra) vertex indices per cell. An overview of the
datasets that we will be using for our experiments is given in
Figure 4 and Figure 7.

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2015)

On the systems level, our method is designed for and
guided by the constraints of the OSPRay ray tracing frame-
work; this paper describes how we make the algorithmic
component work within this system. In particular, we de-
scribe how our framework makes use of ISPC for Instruction
Set Architecture (ISA) independent vectorization, and what
we have to do to work within the existing software architec-
ture.

In our work we define a module to support two types of
homogeneous (single polyhedra type) unstructured polyhe-
dral grids, tetrahedral and hexahedral grids. We extend the
OSPRay abstract types representing geometry and volumes
to achieve both isosurface and DVR for unstructured grids.
The new geometry type we define is used to wrap a min-max
BVH which contains our tetrahedral or hexahedral mesh and
is used for both isosurfacing and direct volume ray tracing.
The new volume type is used to extend the OSPRay vol-
ume sampling functionality for unstructured datasets and is
designed such that it is simply an interface for OSPRay to
access the previously mentioned geometry type as a volume.
These new types are designed such that OSPRay will be able
to interact with them in exactly the same manner that it in-
teracts with their base types.

5. The Min-Max BVH

At the core of our method is a min-max BVH nearly identi-
cal to the one described in [WSBWO1] (albeit with different
traversal kernels). We use a binary BVH in which each inner
node points to two subtrees, while leaves point to a list of
primitives. In addition, each BVH node contains the mini-
mum and maximum attribute value that a sample in any cell
in the respective subtree could possibly return: for interme-
diate nodes it is the minimum/maximum of these values for
all primitives in that subtree, for leaf nodes it is the mini-
mum/maximum of these values for all primitives contained
in that leaf, and for each primitive it is the minimum/maxi-
mum attribute value at its vertices.

As in [WSBWOL1], our BVH is built over all primitives.
This means that in the case of isosurface rendering the tree
is built without regard to whether or not a given primitive can
contain the isovalue of interest. Eventually such subtrees of
uninteresting cells are culled during traversal by checking
the min-max BVH ranges against the isovalue of interest.

Building the min-max BVH over all primitives makes ad-
justing the isovalue of interest at runtime trivial since the tree
does not have to be rebuilt nor updated. The ability to adjust
the isovalue of interest at runtime allows for rapid dataset ex-
ploration and analysis. Building the tree in such a way also
allows the same min-max BVH to be used both for implicit
isosurface rendering and direct volume ray casting.

In the case of data that is divided up into many subsec-
tions, such as simulation results from multiple nodes, we
build a min-max BVH over all pieces.

4 B. Rathke et al. / SIMD Parallel Ray Tracing of Homogeneous Polyhedral Grids

struct MinMaxBVH2Node {
float bounds_low[3];
float scalar_range_low ;
float bounds_high[3];
float scalar_range_high ;
int64 childCount : 3;
int64 childRef : 61;

B

Figure 2: Data Layout of a min-max BVH Node.

5.1. Relationship to Embree BVH Kernels

Though Embree (which OSPRay builds on) provides very
efficient kernels for both building and traversing BVHs we
do not use the Embree BVHs for the unstructured grid rep-
resentation (though OSPRay still uses it for all other geome-
tries), and instead build our own binary BVHs. This is be-
cause we require additional information in our BVH, namely
the min/max of the value, and as of the writing of this paper
it is not practical to extend Embree to do so. Furthermore,
there is no ideal way to extend the existing Embree BVH
build and traversal kernels to do the min/max culling of sub-
trees (Section 6) during traversal. It would of course be pos-
sible to integrate our method into Embree, since Embree is
fully open source; and this would be expected to yield signif-
icant higher performance in both construction and traversal.
Embree style parallel BVH build kernels could significantly
reduce tree construction times allowing us to compute new
trees at runtime for time varying data and improved inter-
section performance through hybrid traversal methods which
have been shown to increase traversal performance by up to
50% compared to packeted traversal [WWB™ 14]. This, how-
ever, would require significant low-level, ISA-specific code
that would make our system significantly harder to extend
and maintain.

Since we are not using Embree’s BVH, we could in the-
ory also have used other data structures such as kd-trees as
proposed in [WFM*05]. However, BVHs have other useful
properties such as bounded and predictable memory use; and
for highly unstructured data such as tetrahedra and isovalue
BVHs are significantly easier to build and traverse than kd-
trees. Hence our entire framework builds on BVHs.

5.2. BVH Memory Layout

The data layout for our BVH nodes is depicted in Figure 2.
All BVH nodes contains 6 floats for specifying that node’s
bounding box, two floats for the attribute range, and a 64-bit
integer to encode the leaf or child pointers. An intermediate
node in the tree will have a childCount of O while in a
leaf node childCount will give the number of primitives
as children. The 61-bit childRef value is dual purpose. If
the node is a leaf this is an offset into a separate “item list”
array of 64-bit integers that identify the primitives (though
what exactly those 64-bit integers represent is up to the ge-
ometry using the BVH; the BVH does not care). If the node

is an intermediate node, then childRef represents an off-
set from the beginning of tree storage to the location of the
first of the two children. Sibling nodes are stored contigu-
ously in memory so only a single offset is needed. This mem-
ory layout takes up only 40 bytes per min-max BVH node.

Using item lists allow for building the BVH without mod-
ifying the input vertex and index arrays, which is an im-
portant property when integrating into existing visualization
packages.

Eliminating item lists would have required some degree
of duplication of the primitives into the leaf nodes (due to
the fact that nodes may overlap and a single primitive could
be contained in more than one leaf), or rearranging the ex-
isting data. If we were to copy the primitives into BVH leaf
memory we would be spending extra time during BVH build
for the copies and would no longer be able to do easy linear
traversal of the primitives. Rearranging the existing data is
also not desirable as it would prevent integration with exist-
ing tools such as ParaView.

5.3. Min-Max BVH Construction

For the BVH construction code we intentionally chose a
simple and straight-forward spatial median builder [MB90].
Though more advanced surface-area builders are often sig-
nificantly faster to traverse| EGMMO7], for our applications
spatial median builds are sufficient. Since our BVH is built
over all grid cells (not only those used for any specific iso-
value) the distribution of our primitives is far more spa-
tially uniform than typical surface data would be; so virtually
none of the original assumptions of a surface area heuris-
tic (SAH) [MB90] apply. We do, however, apply the SAH
termination criterion when determining whether to split or
create a leaf.

The build code is intentionally simple and is implemented
in scalar C++. In each recursive partitioning step, we com-
pute the bounding box of all primitives’ centroids, and de-
termine the plane that halves this box along its widest di-
mension. We then perform an in-place quick-sort partition-
ing step, and recursively build both left and right halves until
the termination criterion tell us to make a leaf (due to encod-
ing, we only allow leaves with less than 8 primitives).

5.4. Time Varying Data

We support time varying data by building a separate min-
max BVH for individual time steps. This choice was made
due to a prioritization of the runtime performance of switch-
ing between time steps over that of memory footprint. If our
tree build times were similar to that of Embree[WWB*14]
we would likely have chosen to build trees for each time
step on the fly to save system memory. An example of time
varying data is shown in Figure 3.

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2015)

B. Rathke et al. / SIMD Parallel Ray Tracing of Homogeneous Polyhedral Grids 5

l .

Figure 3: Three time steps of the “Fusion” data set. Each
time step is given its own OSPRay Geometry object and
switching between them is accomplished by a simple pointer
swap in the renderer, which then causes all rays traced to
then reference the corresponding time step Geometry or
Volume.

5.5. ISPC Implementation

Traversal of the min-max BVH is implemented with the ISPC
SPMD compiler to take advantage of all vector units avail-
able in the hardware. To accomplish this we maintain the
structures used in the C++ implementation in the ISPC im-
plementation and simply pass ownership of the pointers to
ISPC. We evaluated two general methods of vectorized BVH
traversal.

In the first method, which we call SPMD traversal, each
program instance traverses the min-max BVH independently.
The program instance keeps track of its own traversal stack.
The SPMD algorithm is trivial to implement by simply al-
lowing all traversal state variables to be varying, which al-
lows each SIMD lane to perform its own, independent traver-
sal.

In the second method, packet traversal [WSBWO1], rays
traverse the BVH in groups sized by the SIMD vector width.
ISAs supporting AVX/AVX2 will create packets of eight
rays while SSE capable machines will produce packets of
only four rays. When traversing the BVH with a packet, each
active ray must consider the same BVH node at the same
time as all other rays in the packet. The packeted traversal
algorithm is implemented very similarly to the SPMD algo-
rithm, however all traversal state tracking variables are im-
plemented using ISPC uniform types and must be treated as
if they were shared memory between multiple threads of ex-
ecution. If aray has terminated earlier than its peers either by
exiting the volume or successful intersection/sampling then
that SIMD lane will be masked off for the remainder of the
traversal.

Our methodology for comparing those two methods was
to collect performance metrics in terms of rays per second
for each of our test datasets and compare their average value
as well as how well each algorithm scales as cell count and
therefore tree complexity increases. Each dataset tested is
shown in Figure 4.

From Table 1, we can see that the packeted traversal algo-
rithm is more performant with all our test datasets and scales
significantly better as well. In particular, packeted traversal
achieves teh highest performance increase with our hexahe-
dral (Earthquake) dataset; the significant increase in percent-
age speedup from packet traversal of the hexehedral dataset
in comparison to the tetrahedral datasets is due to the scalar

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2015)

Dataset | Size || SPMD | Packeted || Gain
Bucky 177k tets 68.9 103.2 50%
Jets IM tets 79.9 92.0 15%
T-jet 12M tets 90.7 109.4 21%
SF1 14M tets 60.2 78.7 31%
Earthquake | 47M hexes 14.1 46.3 228%

Table 1: A comparison of both traversal algorithms on our
Xeon Node (specifications in Section 8). Values are mea-
sured in millions of rays per second using the OSPRay obj
renderer on implicit isosurfaces for the same views as Figure
4 and with shadowing disabled.

overhead incurred during intersection being dwarfed by the
amount of traversal work necessary for such a large number
of cells. Based on these results we choose to implement a
packet traversal as our default algorithm and all future re-
sults will reflect an assumption of using packet traversal.

6. Application to Isosurface Ray Tracing

We render an implicit isosurface that is calculated at traver-
sal time with no previous isosurface extraction. This is ac-
complished by interpolation of the values at the vertices that
make up each primitive. By building a min-max BVH opti-
mized for ray traversal over all of the primitives that make
up a volume we are able to achieve interactive frame rates.

6.1. Multiple Isosurfaces

There are two cases which can create multiple isosurfaces in
a single scene. The first case is that a scene may have mul-
tiple volumes each represented as an isosurface. The second
case is that of a single volume represented by multiple iso-
surfaces — which in turn implies two possible implementa-
tions.

For the case in which there are multiple volumes, imple-
mentation is trivial. Since each volume is represented by its
own geometry object all interactions are already provided by
the existing OSPRay systems.

Multiple isosurfaces generated from a single geometry
can be implemented naively by simply re-traversing the min-
max BVH for each isosurface individually. However, such a
naive implementation would perform poorly. Instead we ex-
ecute traversal for all isosurfaces at once, and test for all iso-
values at each step. If any isovalue intersection for the group
of isovalues is successful we return a hit. This allows us to
avoid excessive re-traversal of the min-max BVH.

For all cases, after the intersection is returned it is left
to the renderer to decide whether or not to continue tracing
from the intersection location in order to find intersections
with other surfaces in the scene.

6 B. Rathke et al. / SIMD Parallel Ray Tracing of Homogeneous Polyhedral Grids

Bucky Ball (Bucky)
(177k tetrahedra)

Turbulent Jet (T-jet)
(IM tetrahedra)

(12M tetrahedra)

San Francisco Bay (SF1)
(14M tetrahedra)

Japan Earthquake
(47M hexahedra)

Figure 4: The five datasets used in our experiments (in increasing geometric complexity), in this figure rendered as isosurfaces

using an ambient occlusion renderer:

6.2. Implicit Min-Max BVH Traversal

When rendering implicit isosurfaces the min-max BVH is
traversed in search of cells containing any isovalues of in-
terest. Subtrees in which our isovalue of interest may not
exist are skipped over entirely.

6.3. ISPC Implementation

On the ISPC side, we render isosurfaces by wrapping the
min-max BVH in an extended OSPRay Geometry type
named IsosurfaceGeometry. IsosurfaceGeome—
try is treated by OSPRay just like any other Geometry
type and can be used by any OSPRay surface renderer. The
IsosurfaceGeometry type contains a min-max BVH,
and, in order to work as an OSPRay Geometry has to imple-
ment two functions inherited from the base geometry class.
The intersect function which is the interface between
the ray caster and the geometry itself and is used to gener-
ate ray-surface intersection information. The postInter—
sect function also needs to be implemented; it uses the in-
tersection information generated by the intersect func-
tion to interface between the geometry and the renderer for
the purpose of shading.

6.4. Ray-Cell Isosurface Intersection

Once primitives potentially containing the isovalue are
found via traversing the min-max BVH, we then do a ray-
isosurface intersection test with those primitives, using the
Neubauer method [NMHWO2] (also see Figure 5). The sur-
face normal on the hit point (if found) is generated through
central differences.

6.5. Shading

Shading the implicitly generated isosurfaces is handled by
the already implemented renderers in the OSPRay frame-
work. The central difference is calculated and used as the
surface normal at intersection time and the rest is handled
by the existing renderer with no modifications necessary.

7. Application to Direct Volume Ray Tracing

OSPRay volume rendering is sample based. The renderer
will generate samples which are tested against the volume.

tin = inf; tour = -inf;
for each cell plane do
tphit = intersect(ray, plane)
tin = min(tphit, tin) tout = Max(typic tout)
end
if #;;, > tour then return NO_HIT
to = tin; t] = tout; Vo = interpolate(ray, cell, ty); v| =
interpolate(ray, cell, t;);

for i=1..N do
t=1o+ (1 —10) 7=
if sign(interpolate(ray, cell, t)) == sign(vy - iso)
then
tg = t; Vo = interpolate(ray, cell, t)
else
t; =t; v| = interpolate(ray, cell, t)
end
end
thir = to + (t1 —10) 572
return ty;

Figure 5: Our cell intersection algorithm (used for all cell
types). We first test that the ray intersects a given cell, gen-
erating ti, and toy in the process. We then apply Neubauer’s
method with N=2 to generate ty;; through successively sub-
dividing the line segment intersecting the cell and interpo-
lating along it.

(a) (b) ()

Figure 6: The bucky ball volume dataset rendered with (a)
no shadows, (b) shadows, (c) ambient occlusion We can triv-
ially choose different preexisting renderers or even extend
OSPRay with a new renderer with which to visualize the
dataset when rendered as an implicit isosurface.

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2015)

B. Rathke et al. / SIMD Parallel Ray Tracing of Homogeneous Polyhedral Grids 7

Bucky Ball (Bucky)
(177k tetrahedra)

Turbulent Jet (T-jet)
(IM tetrahedra)

(12M tetrahedra)

-7

San Francisco Bay (SF1)
(14M tetrahedra)

Japan Earthquake
(47M hexahedra)

Figure 7: The same datasets as in Figure 4, this time rendered with direct volume ray casting using appropriate transfer

Sfunctions.

We extend OSPRay’s existing structured Volume type with
a new subclass supporting unstructured volumes. The new
Volume type for unstructured data contains a full Geome-
try object as is used for the implicit isosurface rendering.

To interface properly with the OSPRay volume renderer
new Volume type must implement a computeSample
function which returns the interpolated value of the scalar
grid within the Volume at a given sample position. The
computeSample function is required to traverse the min-
max BVH with regards to the sample position. It is important
to note that since a given sample position can exist within
both subtrees of the min-max BVH we must keep a stack of
subtrees that have not yet been visited so that we can back-
track if necessary and continue traversal. Once we find a leaf
that potentially contains a primitive for which our sample
position is valid we test each primitive in turn to check that
the sample position is contained within the primitive. Much
of this final primitive intersection code is highly scalar in
nature which does impact performance.

7.1. ISPC Implementation

Just like for our implicit isosurface rendering the rays used to
generate sample positions are handled as a packet. For each
ray in a packet we sample along it until we either sample
outside of the scene, or it is not possible for further samples
to contribute to the final image.

Sampling is handled during traversal of the min-max BVH
structure. Once it is determined that the sample position ex-
ists within a cell we simply calculate the scalar value at the
sample position by interpolation from the cell vertices. For
illustrative purposes interpolation from a tetrahedral cell is
detailed in Figure 8.

7.2. Amortizing Tree Traversal Overhead

To help amortize the overhead of traversing the min-max
BVH for each sample we generate a group of samples along
each ray all at once. We are then traversing the tree with a
packet of groups of samples, rather than a packet of samples.
We speculatively descend the min-max BVH if any sample

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2015)

inline varying float interpolate (uniform Tet &tet, const
varying vec3f P)
{
const varying float u =
dot(P, tet . plane [1]. N)+tet. plane [1]. d;
const varying float v =
dot(P, tet . plane [2]. N)+tet. plane [2]. d;
const varying float w=
dot(P, tet . plane [3]. N)+tet. plane [3]. d;
return
(1. f—u—v—w)xtet.vertex[0].val+
u * tet.vertex [1]. val+
v x tet.vertex [2]. val+
w * tet . vertex [3]. val;

Figure 8: Scalar value interpolation from a tetrahedral cell
via trilinear interpolation.

Group Size
Dataset 1 4 8 16 24 32
Bucky 54.6 56.5 56.0 549 524 49.6
Jets 52 52 54 53 52 5.1
T-jet 4.0 4.4 45 4.5 4.4 43
SF1 9.9 9.6 9.5 9.0 8.7 8.4
Earthquake 12 13.7 15.9 17.7 17.8 17.3
Average difference from baseline across datasets
[0 [+74] +112] 4114 | +56 | -2

Table 2: A comparison of different sample group sizes for
each dataset as measured on our Xeon Node. Values are in
millions of rays per second. The values in bold represent the
highest achieved for the dataset.

for any ray is found to exist within a given subtree. This will
result in some unnecessary traversals, but is offset by the
number of traversals that no longer have to start from scratch
at the root of the tree. To a lesser extent, we also have a per-
formance gain from a reduction in the number of function
calls made since we also no longer need to call traverse
for individual sample positions and, in particular, have fewer
memory accesses.

In Table 2 we evaluate traversal performance for vari-
ous sample group sizes and observe a trend of larger sam-
ple group sizes correlating with higher performance on rela-
tively larger datasets with an outlier of the SF1 dataset. The
SF1 dataset performs poorly with large sample groups due to

8 B. Rathke et al. / SIMD Parallel Ray Tracing of Homogeneous Polyhedral Grids

Group Size
1 4 8 16 24 32
Step size

2.5 24 (29 | 31| 32|33 33

5 35 139 | 41 | 41 | 41 | 40
7.5 45 | 46 | 47 | 47 | 47 | 45
10 52 | 53 | 54 | 53|52 49
12.5 59 [60 | 60 | 58 | 57 | 55
15 65 | 65 | 65 | 63 | 6.1 | 6.0

Table 3: Performance scaling of sample group size against
ray marching distance on the Xeon Node. All measurements
are in millions of rays per second, and all measurements
were taken using the Jets dataset. The values in bold are the
highest throughput achieved for the step size noted on the
left of the row. For reference, the ray marching distance used
for the Jets dataset in Table 2 was 10.

how thin the volume is relative to the view angle, as such our
extra samples would have been culled as they are beyond the
volume bounds but are forced to traverse the BVH anyway.

In Table 3 we explore the relationship between ray march-
ing distance and sample group width. We found that group
size and step size have an inverse relationship with regards
to performance; that is to say larger group sizes give a larger
performance increase only when step size is relatively small.
This relationship is important because a smaller step size im-
plies a greater visual fidelity, and as such it is notable that it
is possible to regain some lost performance when enhancing
visual fidelity by increasing sample group size.

Given our observations in Table 2 and Table 3 we choose
a sample group size of 16 for future measurements as this
size on average gave the best performance for the level of
visual fidelity shown for each scene in Figure 7.

8. Results and Discussion
We gathered performance data for two workstation nodes.

e A node equipped with two Intel® Xeon®E5-2687W v3
processors running at 3.1GHz and with 128GB of system
RAM (referred to as the Xeon Node)

e A node equipped with two Intel® Xeon®E5-2680 pro-
cessors running at 2.7GHz 46GB os system RAM and
three Intel ®Xeon Phi™7120A coprocessors (referred to
as the Phi Node)

Our method is performs well on a single general com-
pute node equipped with a Xeon CPU (Table 4) with the ray
throughput equivalent to 22.3 frames per second for implicit
isosurface ray casting and 8.5 frames a second for DVR of
our largest dataset (Earthquake) assuming a 1080p resolu-
tion. On the Phi Node, we measured ray throughput equiv-
alent to 48.9 frames per second when performing implicit
isosurface ray casting and 8 frames per second for DVR with
the same dataset and resolution (Table 4).

Interestingly DVR rendering does not scale as well as
implicit isosurface rendering on our Xeon Phi node and for

Xeon Node Phi Node
Dataset Size ISO DVR ISO DVR
Bucky 177k tets 103.2 549 365.0 253
Jets 1M tets 92.0 53 282.0 9.7
T-jet 12M tets 109.4 45 418.9 9.8
SF1 14M tets 78.7 9.0 190.8 12.1
Earthquake 47M hexes 46.3 17.7 101.6 16.7

Table 4: Performance in millions of rays per second (higher
is better) for both the Xeon and Phi nodes. Isosurface (I1SO)
renderings are done with the OSPRay 'obj’ renderer and
shadows are disabled and for the Phi node we generated 100
samples per pixel per frame rather than the standard single
sample per pixel per frame. DVR renderings were done with
no differences in settings between the workstation and Phi
nodes.

the Earthquake dataset actually performs more slowly than
on a standard Xeon processor. We currently believe that
this is because in several cases our method devolves into
near-scalar execution, a task for which the Xeon Phi is not
well suited. Degeneration into scalar execution is due to our
current lack of hybrid traversal algorithms; the addition of
which would allow packets that have diverged into single-ray
traversal to still take advantage of SIMD execution. With hy-
brid traversal algorithms we expect that performance on the
Phi Node would increase significantly.

8.1. Comparison to Other CPU Methods

Unlike some other CPU based isosurface visualization al-
gorithms our method does not require any pre-computation
of the volume data to extract an isosurface. Isosurfaces are
generated implicitly and never exist explicitly in memory, as
such our memory overhead during isosurface rendering con-
sists only of that which is needed to store the min-max BVH.

Our method also allows for usage of the same BVH tree
structure to do both isosurface rendering and direct volume
ray tracing. As such it is feasible to rapidly and dynamically
toggle between isosurface and volume rendering during run
time.

8.2. Comparison to GPU Methods

Unlike the popular projected tetrahedra technique ours is not
an approximation. Rather than approximating cell projection
by splatting transparent triangles onto the frame buffer we
are directly sampling the data for each pixel.

Although similar methods have been developed for GPUs
they still suffer from the constraints of available GPU mem-
ory which can be orders of magnitude lower than the avail-
able system memory. For instance, the Earthquake dataset
consumes approximately 10GB of memory at runtime for
the grid, BVH, and other in memory data structures and
many datasets are orders of magnitude larger. Our CPU
method can be compiled and run on any general compute
node and requires no specialized hardware.

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2015)

B. Rathke et al. / SIMD Parallel Ray Tracing of Homogeneous Polyhedral Grids 9

9. Conclusions

We have presented a technique for interactive visualization
of homogeneous unstructured volumetric grids usable for
both implicit isosurface visualization and direct volume ray
tracing. We used packeted min-max BVH traversal in a ray
tracer implemented with an SPMD compiler to achieve high
performance across both CPUs and Intel Xeon Phi copro-
cessors while avoiding the need to write specialized code for
each platform. We find our method to perform adequately
and with minimal memory overhead on general compute
nodes without the use of a GPU.

The method as presented performs well for isosurface ren-
dering and can also be used for direct volume ray tracing. Al-
though performance with regards to direct volume ray cast-
ing is lower than desired, through progressive refinement
methods our algorithm is capable of tolerating high step
sizes when sampling along a ray which helps to solve our
performance issues while maintaining high image quality.

The main barrier to using our method for in-situ visualiza-
tion of simulation data is currently the build time required
for our min-max BVH, and our rendering performance is
currently limited by our intersection and interpolation ker-
nels. We leave as future work a parallelized and non-scalar
min-max BVH build and update kernels such that quickly re-
building or updating an existing BVH for time varying data
during simulation is feasible as well as finding methods to
either reduce the number of intersections/interpolations nec-
essary to produce quality images or reduce the number of at-
tempts to intersect/interpolate irrelevant nodes. Future work
may also include auto-tuning some of the fixed parameters
we are currently using, such as sample group size. It would
also likely be a large performance gain to supplement our
technique with some low-level vectorized kernels for tasks
for which we currently default back to scalar execution.

References

[CBW*12] CHILDS H., BRUGGER E., WHITLOCK B., MERED-
ITH J., AHERN S., PUGMIRE D., BIAGAS K., MILLER M.,
HARRISON C., WEBER G. H., KRISHNAN H., FOGAL T.,
SANDERSON A., GARTH C., BETHEL E. W., CAMP D., RU-
BEL O., DURANT M., FAVRE J. M., NAVRATIL P.: Vislt: An
End-User Tool For Visualizing and Analyzing Very Large Data.
In High Performance Visualization—Enabling Extreme-Scale Sci-
entific Insight. Oct 2012, pp. 357-372. 1,2

[CDMO06] CHILDS H., DUCHAINEAU M., MA K.-L.: A Scal-
able, Hybrid Scheme for Volume Rendering Massive Data Sets.
In Proceedings of the 6th Eurographics Conference on Parallel
Graphics and Visualization (2006), EGPGV 06, pp. 153-161. 2

[EGMMO07] EISEMANN M., GROSCH T., MAGNOR M.,
MAULLER S.: Automatic Creation of Object Hierarchies for
Ray Tracing Dynamic Scenes. In IN WSCG SHORT PAPERS
PROCEEDINGS (2007). 4

[Hen04] HENDERSON A.: The ParaView Guide: A Parallel Visu-
alization Application. Kitware, Nov. 2004. 1, 2

[KTW*11] KNOLL A., THELEN S., WALD I., HANSEN C. D.,

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2015)

HAGEN H., PAPKA M. E.: Full-resolution Interactive CPU Vol-
ume Rendering with Coherent BVH Traversal. In Proceedings of
the 2011 IEEE Pacific Visualization Symposium (2011), pp. 3-10.
2

[LC87] LORENSEN W. E., CLINE H. E.: Marching Cubes: A
High Resolution 3D Surface Construction Algorithm. In Pro-
ceedings of the 14th Annual Conference on Computer Graphics
and Interactive Techniques (1987), SIGGRAPH ’87, pp. 163—
169. 1,2

[MB90] MACDONALD D. J., BOOTH K. S.: Heuristics for Ray
Tracing Using Space Subdivision. Vis. Comput. 6, 3 (May 1990),
153-166. 4

[MHDG11] MUIGG P., HADWIGER M., DOLEISCH H.,
GROLLER E.: Interactive Volume Visualization of General
Polyhedral Grids. Visualization and Computer Graphics, IEEE
Transactions on 17, 12 (2011), 2115-2124. 2

[MS06] MARMITT G., SLUSALLEK P.: Fast Ray Traversal of
Tetrahedral and Hexahedral Meshes for Direct Volume Render-
ing. In Eurographics/IEEE-VGTC Symposium on Visualization
(EuroVIS) (2006), pp. 235-242. 2

[NMHWO02] NEUBAUER A., MROzZ L., HAUSER H., WE-
GENKITTL R.: Cell-based First-hit Ray Casting. In Proceedings
of the Symposium on Data Visualisation 2002 (2002), VISSYM
*02, pp. 77-1f. 6

[PM12] PHARR M., MARK B.: ISPC - A SPMD compiler for
high-performance CPU programming. In Proceedings of Inno-
vative Parallel Computing (inPar) (2012). 3

[PSL*98] PARKER S., SHIRLEY P., LIVNAT Y., HANSEN C.,
SLOAN P.-P.: Interactive Ray Tracing for Isosurface Rendering.
In IEEE Visualization 98 (October 1998), pp. 233-238. 2

[SCCBO0O5] SiLva C. T., ComBA J. L. D., CALLAHAN S. P,
BERNARDON F. F.: A Survey of GPU-Based Volume Render-
ing of Unstructured Grids. Brazilian Journal of Theoretic and
Applied Computing (RITA 12 (2005), 9-29. 2

[Sch06] SCHROEDER W.: The visualization toolkit : an object-
oriented approach to 3D graphics. Kitware, 2006. 2

[ST90] SHIRLEY P., TUCHMAN A.: A Polygonal Approximation
to Direct Scalar Volume Rendering. In Proceedings of the 1990
Workshop on Volume Visualization (1990), VVS 90, pp. 63-70.
2

[WFKHO07] WALD 1., FRIEDRICH H., KNOLL A., HANSEN
C. D.: Interactive Isosurface Ray Tracing of Time-Varying Tetra-
hedral Volumes. Tech. Rep. UUSCI-2007-003, SCI Institute,
University of Utah, 2007. (conditionally accepted at IEEE Vi-
sualization 2007). 2, 3

[WEM*05] WaALD 1., FRIEDRICH H., MARMITT G.,
SLUSALLEK P., SEIDEL H.-P.: Faster Isosurface Ray Tracing
using Implicit KD-Trees. [EEE Transactions on Visualization
and Computer Graphics 11,5 (2005), 562-573. 2,4

[WSBWO01] WALD 1., SLUSALLEK P., BENTHIN C., WAGNER
M.: Interactive Rendering with Coherent Ray Tracing. Com-
puter Graphics Forum 20, 3 (2001), 153-164. (Proceedings of
Eurographics 2001). 3, 5

[WWB*14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S.,
ERNST M.: Embree - A Kernel Framework for Efficient CPU
Ray Tracing. ACM Transactions on Graphics (Proceedings of
ACM SIGGRAPH) 33 (2014). 2,4

